
An Ontology Based Requirement Rule
Consistency Checking Framework

Dr. Farheen Siddiqui
Dept. of computer science, Jamia Hamdard, Handard Nagar, New Delhi

Abstract: In this paper, we investigate how ontologies
developed for use in Semantic Web technology could be used
in automated consistency checking of application
requirements. Ontology Driven Architecture allows
developers would discover shareable domain models and
knowledge bases from a variety of interrelated repositories
and then wire them together with the remaining object-
oriented components for user interface and control. Domain
knowledge base(domain Ontology) captures domain
concepts, relationships and rules. Requirements rules should
note violate these rules or contradict the usual business
behaviour. This paper suggests a rule editing and validation
framework RECC (REquirement-rule Consistency
Checking)that guides an analyst to enter (application specific)
requirement rules. It rests on Semantic Web technologies
together with reasoning engines, which operate with semantic
representations.A practical validation of the approach by
instantiating this framework with OWL and reasoning
engines is presented here. When requirement rules are
authored with RECC the acquired requirements would
comply with both business needs and domain knowledge.

Key Words: Knowledge authoring, Semantic Web, Ontology
rule editor, reasoning engines.

I. INTRODUCTION

Knowledge authoring has become a fundamental process in
the current knowledge society, since it allows organizations
and entities to obtain and manage valuable information
when taking decisions. This process usually consists of
three stages [32], involving domain experts and knowledge
system administrators. This paper is particularly focused on
the phase wherein an expert adds application specific
knowledge (requirement rule and validates it .. The
processes studied in this paper are based on the use of
Semantic Web technologies [3,11]. The adoption of the
Semantic Web overcomes the search and integration
limitations of knowledge management systems [15]. More
specifically, ontologies are adopted based on Description
Logic (DL) [1, 2] as the representation (Fig 1) of the
domain model in such processes. Knowledge models based
on DL ontologies are usually divided into TBox
(terminological) and ABox (assertion) components

Fig 1: Knowledge models represented by means of DL
ontologies with ontology rules.

The TBox contains the vocabulary and schema that define
domain concepts, their properties,and the relationships
(called roles in DL) among them. Hence, a concept
represents a set of elements with similar characteristics
(e.g., Students , StudyProgram, Instructor etc.), whereas
roles symbolize binary relationships among elements (e.g.,
Student EnrollIn StudyProgram). Apart from these two
atomic components, the DL language offers some axioms
and restrictions over them to represent more complex
domains (e.g., a RegularStudent is a specialization of the
Student concept; a Student must have at least Enrollment).
On the other hand, the ABox is populated with instances of
these concepts and roles, representing a specific situation in
the domain according to that schema. Let us see a simple
example of an ontology rule. Suppose the domain model of
a system which manages the task of a university system is
represented by an ontology where Student and
StudyProgram are concepts, and EnrollIn is a role that
relates Student to their enrollment in a specific course.
Moreover, Student has a specialization MCAStudent.The
ABox of the ontology contains the assertions
Student(Mark), StduyProg(MCA) and
EnrollIn(MarkMCA). Now, suppose that a system
administrator wants to express that all students Enrolled in
MCA are MCA students. This conditional statement can be
defined through the knowledge rule by using the previous
ontology elements as follows:
 Student(?x) StduyProg(MCA) ^ EnrollIn(?x, MCA) -
>MCAStudent(?x)
The main contribution of this paper is the development of a
generic rule authoring system in a Semantic Web
framework which includes the characteristics listed in the
above paragraph. To this end, we have developed a
framework RECC which consist of a GUI that guided the
user through simple steps when editing rules. RECC enable
a comfortable rule editing, testing, debugging and
validation. RECC consists in a graphical front end which
guides the user in the management application specific
business rule. RECC is a stand-alone application aimed to
graphically edit, test, debug and validate ontology rules in
any domain. Therefore, the RECC is intended to be used in
developing application that needs to work with Ontology,
ontology rules and reasoning processes.
In this work we have focused on university scenario where
there is a necessity of modeling and monitoring knowledge
rules to illustrate the RECC functionalities. Particularly,
this scenario is based on the management of information
directed to manage task of university. The rest of the paper
is structured as follows. The next section introduces the
underlying elements on which RECC based, and then gives
an abstract architecture of the rule authoring system.

Farheen Siddiqui/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2574-2580

www.ijcsit.com 2574

Section III provides a description of the RECC architecture
implementation, focusing on technical aspects of the
authoring process. A scenario in which RECC is used to
generate knowledge rules to control an intelligent building
is exposed in section IV. Section V discusses several
related tools for managing ontologies and rules. Finally,
section VI summarizes our contribution and points out the
future work.

II. RULE AUTHORING SYSTEM IN A SEMANTIC WEB

FRAMEWORK
A. Motivation: A University scenario

In order to illustrate how RECC manages the authoring
cycle of knowledge rules, it has been integrated into
university system as a case study. The scenario corresponds
to the management of a university. This university offers
several study Programs in regular and online modes The set
of rules applicable to students are different depending on
mode and Study Program. Also the rules governing student
may change in every academic year. Thus university
systems need to manage the edition and monitoring of
rules, presenting an excellent field to test the authoring
framework developed here. In particular, the scenario
focuses on the management of Students enrolled in
different study Programs .There are two types of rules:
domain rules, which are applicable to all application of a
specific domain and requirement rule which are applicable
for the general operations a specific application under
consideration. Suppose that Bob is a Student who has
enrolled in a study Program with regular mode.
The domain rule states that every student enrolled in Study
Program must appear in examination. This domain rule will
be represented as a knowledge rule, denoted by ExamRule
henceforth (see section 4.1). The use of rules to detect
inconsistencies in property values over elements in the
domain is a desirable feature of these systems. If the
relation between Student and Exam is missing, then RECC
will be able to detect the missing relationship during
requirement rule authoring. Thus, the generation of new
knowledge through rules should be permitted in a simple
manner.
Now consider a specific application requirement that a
student with more a backlog paper is not allowed to appear
in examination. This requirement rule will be represented
as a knowledge rule, denoted by BacklogRule henceforth
Student(?x) ^ StudyProg(?p) ^ course(?c)
^ hasCourse(?p,?c) ^ EnrolledIn(?x,?p)
^exam(?e) ^ examHeld(?e,?c) ^ course(?d)
 ^ hasBacklog(?x, ?d) ^ notEqual(?c, ?d) ->Detained(?s)
Now suppose that Bob is enrolled in MCA course and is
having a backlog held with him. Therefore, it is possible to
reach a situation in which domain rule states that Bob
should appear in exam while the requirement rule states
that Bob is not allowed to appear for Exam . Now, the
system analyst should be able to detect and manage the
conflict generated due to these two rules.
The following relationships between the domain concepts
are captured: an StudyProg has assigned one or more
Courses through the HasCourse relation; a Student has
enrollment in a course by means of EnrollIn relation;

Notice that these relationships are not modeled here as
simple properties , but as concepts. The fundamental for
this decision resides in that the types of such relationships
could be used to classify them in different categories. Thus,
EnrollIn is a special type of association that an student has
with StudyProg Eventually, observe that the domain and
the range of these associations are described through roles.

Fig 2: The University scenario expressed in an OWL-DL
ontology.

Fig 2 reflects the current state of affairs in the scenario by
means of concept (C(x)) and role (R(x, y)) assertions..

B. Generic rule authoring system architecture
Once the knowledge and rule models have been introduced,
the next step developing the generic rule authoring system
resides in establishing the architecture to deal with both of
them. Figure 3 depicts the abstract architecture of the rule
authoring system RECC. The core system (1) is formed by
the RECC which encloses the methods for managing
ontology rules; through GUI, a graphical interface of these
tasks; the OWL API[4] , which manages the ontologies
representing the knowledge model it provides a set of
methods for loading and managing OWL ontologies,
together with a group of reasoning engines with different
capabilities.

Fig 3: An abstract architecture view of RECC connected
with its external resources.

OWL API is employed in the core of the system to obtain a
working model from the domain ontology, not as a
reasoning engine. RECC receives OWL ontologies and
SWRL rules as input (2). RECC is in charge of SWRL
rules, which can also be graphically edited, tested,
debugged and validated in the GUI. Inference processes in
RECC are accomplished by the combination of different
reasoning engines (3). These engines can be distinguish
according to the two types of inference that have been

Farheen Siddiqui/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2574-2580

www.ijcsit.com 2575

explained in the introduction (see figure 1, the reasoning
engines box), namely ontology and rule-based reasoning.
Regarding ontology reasoning engines, there exist several
proposals such as Pellet [31], Jena[6], Euler [30], Fact++
[25]. Likewise, there are several implementations available
in the field of rule-based engines, such as SweetRules,
JEOPS, JLisa, Prova, OpenRules, Jess, RDFExpert[9],
Pellet and Jena.

III. ARCHITECTURE IMPLEMENTATION
The architecture previously presented in figure 3 has been
implemented as framework for authoring of ontology rules.
The following subsections present a description of all
RECC framework components.

A. Details on implementation
Testing and debugging tasks in the rule authoring process
demand that the developers get the full control in the
execution of the rules, step by step, during the whole
authoring session. Moreover, developers need to track the
reasons for which rules have been fired in order to discover
errors in the design of the rules. At the same time, both
ontology and rule-based reasoning processes have to be
taken into account in RECC to test and validate the edited
rules.

Fig 4: class diagram for RECC

The selected engine combination of the current RECC
version for testing and debugging purposes consists of
Pellet both as the ontology reasoner and rule reasoner. If
the user decides to insert a new engine combination, the
RECC framework offers an easy method to achieve it.
Figure 4 depicts the class diagram of the RECC reasoning
architecture. A RuleReasoner is in charge of providing a
debugger component in RECC. A Debugger is a
composition of one or more reasoner implementations.
Each Reasoner implementation inherits from an abstract
class Reasoner which provides basic features related to rule
and ontology managements.
Essentially, in case a user decides to extend the rule
reasoner support, he has to create a new class implementing
the interface Reasoner. This interface only has one abstract
method for carrying out the inference process. Then, the
user can retrieve all the needed information from
OntologyManager and Rule- Manager utility classes using
the methods provided by the Reasoner classes. This
information is then combined with the API of the new
reasoner and the results obtained from the reasoning
process are published using the analogous methods.

B. RECC: Rule Authoring framework for
software applications

RECC software Analyst which need knowledge rule
authoring services. These services are directly implemented
in the RECC as a set of methods to enter business rules,
perform ontology inference processes, and test business
rules, retrieve the inferred knowledge generated by
ontology and rule reasoning processes, and accept/Reject
rules during the authoring process.
The integration of the reasoning processes in RECC has
been depicted in figure 6. It starts dividing the initial
knowledge model into rules on one hand (SWRL), and
ontology model (OWL) on the other hand. Next, the
ontology model is loaded into the Pellet ontology reasoner
producing a semantic enrichment of this ontology model as
output. The reason for doing this separation between
SWRL and OWL is for isolating the execution of the rules
in order to get the full control over their execution for
debugging and validating purposes. Then, ontology rules
have to be transformed from the SWRL syntax managed in
the RECC architecture to the specific rule format imposed
by the rule reasoner in case it is necessary. Next, these rules
and the semantically enriched ontology model are inserted
in the rule reasoner. Finally, this reasoner infers new facts
that could be grouped as rule-based knowledge as shown in
figure 6. For example, the property Enrollment can only
take one value for the same Student; therefore a semantic
inconsistency occurs when this property takes more than
one different value, for a specific application business
needs. Thus, RECC is able to discover inconsistencies, and
to notify it to the Analyst. Then, Analyst can decide to
include the requirement rule again in the initial knowledge
base in order to start a new step in the authoring process or
just simply discard the requirement rule because a rule is
violating the general domain restriction.

Fig 6: Ontology processing for knowledge authoring
C. RECC GUI

RECC provides a GUI intended for being used by system
administrators. All the functionalities involved in the
knowledge rule authoring are offered here in a graphical
mode. RECC provides a full control in the navigation

Farheen Siddiqui/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2574-2580

www.ijcsit.com 2576

across the knowledge models managed in RECC the rule
authoring process is performed hiding the details of the
underlying SWRL syntax to the user. Analyst adds a
requirement rule through a wizard that guides the creation
or modification tasks. These tasks are executed in an easy
and intuitive selection manner, where ontology elements
(concepts, roles, individuals, etc.) are selected to the
correspondent part of the rule structure displayed in the
GUI. This structure is based on SWRL syntax, as
previously exposed in section 2.2. To this end, the rule
editor in RECC offers a complete vision on the domain
ontology, where the user can navigate across all the
information represented in it. Both antecedents and
consequents of a rule are defined in the same manner: For
example, according to the University scenario introduced in
section 2, We can add a SWRL rule saying that an
individual X from the Person class, which has Enrollment
in study Program Y, belongs to a new class Student. Such
rule is best described in the SWRL
 Person(?x)^ StudyProg(?y)^EnrollIn(?x, ?y) ->
Student(?x)
 To edit this rule in RECC-GUI, the Analyst should first
select the class Student and Study Program from the
domain model listed in the class list box.The properties that
are displayed in the property list box are strictly according
to the object properties in domain ontology having selected
concepts either as range or domain. Then analyst can then
select the Enrolln Property (0bject property of Student)to
the rule. The edition task is validated by the wizard,
avoiding the appearance of syntactical errors during the
rule definition.
Regarding consistency checking of requirement rule
provided by RECC-GUI, it offers some options such as two
objects can be related in head of a rule only if such relation
exists in domain ontology. Also a requirement rule can be
added only if it is not violating domain rule and already
added requirement rule and domain rules .RECC informs
about relationships in the antecedents of rule that are
missing in the domain ontology or inconsistent with
domain rule. After a rule has been entered, the analyst
decides whether he wants to insert the inferred facts into
the initial knowledge base in order to perform the next
requirement rule insertion step or discard these facts totally
or partially. As a result, RECC can be seen as a framework
for an ontology rule editing, testing, debugging and
validation.
The inference process depicted in figure 6 and performed
by the selected reasoning combination is done just by a
click action. Not only will this action provide new inferred
knowledge and a consistence validation, but it also offers
the different knowledge bases showing all the information
involved in each step of the knowledge rule authoring
process. This last feature confers an extra debugging power
to RECC over Prot´eg´e [26] or Ontotrack [19], which do
not implement it.

IV. USING THE RULE AUTHORING IN UNIVERSITY

SCENARIO
The domain ontology only captures domain concepts and
neglects domain-restricted rules, or shortly domain rules.

Domain rules are the description of some definitions and
restrictions of a business, which can be used to maintain
business structure and control or influence business
behavior. Those rules are the restrictions or constraints
imposed on business behavior. They usually exist deep in
the mind of users as important background information
which is not easily documented. requirement rules are the
description of some business process, which is to be used
for a specific business structure Hence requirement rule
vary for different application of same domain(same
domain rules). If analysts are not familiar with the domain,
especially the domain rules, they would model a
requirement rule that violates domain rules and hence
making contradiction to the usual business behavior.
Therefore, it is necessary to model requirement rules for
application to achieve agreement not only on the domain
concepts but also without violating the domain-restricted
rules. We can capture all rules together in the application
rules base. The later can be used to check if any
requirement rule is inconsistent with domain rule. This
scenario is used here to illustrate the entire knowledge
authoring process described in the introduction of the
paper, and it specially focused on the management of rules.
Regarding the first stage, dedicated to the acquisition of
knowledge, the Analyst has modeled the education domain
by means of an OWL ontology based on the DMTF-CIM
standard, called OWL-CIM [8]. This OWL ontology
represents the concepts as partially shown in the TBox of
figure 2.A complete vision of the scenario is depicted in
figure 7. The creation of the OWL-CIM ontology that
represents this specific domain has been performed in
Prot´eg´e [26], a broadly used OWL editor. The specific
scenario involving Student and the Exam management
(partially represented in the ABox of figure 2) has been
modeled following the same idea. The OWL files of this
scenario exposed in figure 7 has been distributed within the
RECC framework, as a case of study It describes a
university offering Study Programs in different
Departments For simplicity, just the two Department
involved in the scenario, Computers and Management, has
been depicted. The composition relationship has been
modeled using the hasStudyProg association (see section
2.2). Each StudyProg contains in turn some Courses
(through the hasCourse association).

Fig 7 : A running scenario

Farheen Siddiqui/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2574-2580

www.ijcsit.com 2577

S is a student of the university whose enrolled StudyProg
is MCA (by means of the EnrollIn association). MCA is
offered in Computers Department Each Study Program
conducts examination for the courses it contains. The
Student is linked to Exam by the AppearIn association and
course is linked to Exam by the Heldfor association.From
the domain ontology we can know the following
knowledge: Every student who is enrolled in a shall appear
in exam for that study program corresponding rule:

Exam Rule:
Student(?x) ^ StudyProg(?p) ^ course(?c)
^ hasCourse(?p,?c) ^ EnrolledIn(?x,?p) ^
exam(?e) ^ examHeld(?e,?c) ->Examinee(?s)
Particularly, university scenario deals with the management
of Students and Instructor. On one hand, a domain rule
states that every enrolled student appear in exam This rule
has been recorded as domain rule in a domain rule
base.Contrarily, the policy of a particular university states
that student must not appear in an exam if he is having a
pending backlog course. This rule is added to the by a
system administrator through authoring process of RECC

Backlog Rule :
Student(?x) ^ StudyProg(?p) ^ course(?c)
^ hasCourse(?p,?c) ^ EnrolledIn(?x,?p) ^
exam(?e) ^ examHeld(?e,?c) ^ course(?d) ^
hasBacklog(?x, ?d) ^ notEqual(?c, ?d) ->Detained(?s)
where examinee and detained are defined to be disjoint
classes in domain ontology.

This scenario is used here to illustrate the entire knowledge
authoring process described in the introduction of the
paper, and it specially focused on the management of rules.
Regarding the first stage, dedicated to the acquisition of
knowledge, the system administrator has modeled the
University domain by means of OWL ontology This OWL
ontology represents the concepts as partially shown in the
figure 2. The creation of the OWL ontology that represents
this specific domain has been performed thanks to Protégé
a broadly used OWL editor.

A. Rule authoring process
In order to show an example of the rule authoring process,
suppose that a analyst is responsible of editing the different
domain restrictions by means of rules. To this end, the
analyst uses a kind of templates which gathers such users’
preferences to convert this information into rules As a
result, the analyst defines a rule that a student appear in
exam of the course that belong to study Program in which
student is enrolled with. This rule is called examRule and it
is given below in SWRL abstract syntax. examrule can be
read as follows: if a student is enrolled in a study Program
with course ,and exam is held for that course and the
student, then student appear in exam

Fig 8: Domain Restriction edited in RECC-GUI as a rule

by a analyst.

The edition of the rule through a rule in RECC-GUI can be
seen in figure 8. First, the upper- corner shows the domain
restriction modeled as rule in current domain. Third, panel
shows the concepts, properties and SWRL functions
representing the current domain model. Essentially, these
lists are the friendly, graphical and structured
representation of the OWL ontology and they allow the
user to utilize the ontology concepts without any
knowledge about the OWL syntax. .Then, the user can
select concepts, properties and SWRL build ins from these
lists to the items which compose the rule atoms. As analyst
select concepts from class list box the corresponding
properties are populated in property list box. In case the
Analyst would like to create an atom belonging to the
antecedent of the rule, he will be guided by a wizard to
control and avoid any possible mistake in the atom
definition. The wizard guides the user thought messages in
the GUI in order to notify the next action in the authoring
process. In an atom definition, the user will start selecting a
concept from the list in the class area and validate the
action by clicking the button “next” button. This process is
repeated in the same manner for the predicate and object of
the atom. Then, in order to finish the process, the user has
to press in “confirm Class”, “Confirm Property, “confirm
SWRL” or “Confirm Consequent” according to their aim.
The snapshot in figure 8 represents a situation
in which all the atoms of the ExamRule antecedent and
consequent have been already inserted in by the analyst He
is now using RECC to “Send Rule” which will save the
rule as domain restriction and finish with the rule edition
session.

B. Rule testing, debugging and validation tasks
After defining ExamRule, it is saved in rule file containing
domain rules by clicking on the button “Save Rules.
Analogously, the Analyst uses RECC to insert the
requirement of the particular university as a rule, i.e.
BacklogeRule .Furthermore, in this scenario the RECC of
the system administrator is also configured to automatically
execute an inference process whenever a new rule is added
through RECC, as for example if a student s enrolled d in
study program MCA with course Web Technology will be

Farheen Siddiqui/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2574-2580

www.ijcsit.com 2578

Examinee for exam held for web technology. Now if s has
a pending backlog other than web technology then s will be
detained. Since examinee and detained are disjoint concepts
in the underlying domain model, an inconsistency in the
requirement is detected by RECC. The inference process
provide all the inferred facts produced by the both ontology
and rule reasoning .The Analyst could perform some
actions. On one hand, he can decide to insert the inferred
information into the system passing to the next step in the
debugging session. On the other hand, he can decide to
discard totally or partially the inferred information and to
repeat the inference process changing any rule definition or
enabling/disabling totally or partially some rules in order to
test and validate the correctness of the rules available in the
system. In this case, the RECC framework has detected an
inconsistency in the knowledge base due to the existence of
a conflict between the inferred facts according to
ExamRule and BacklogRule. Both rules force the S to be
Examinee and detained at same time .This situation violates
the disjoint ness of Examinee and detained classes. RECC
is able to detect this conflict and offers mechanisms to
solve it manually. These mechanisms consist of the
selective deletion of one of the conflicting facts.

V. RELATED WORK
As the popularity of the Semantic Web has rapidly
increased, several ontology tools has been developed at the
same time. Prot´eg´e [26] is a famous ontology tool with an
OWL plug-in that allows the user to define her own
ontologies, and to export them into a variety of formats
including RDF(S), OWL, and XML. It also supports the
edition and execution of SWRL rules [27]. SWOOP [28] is
an IDE for developing ontologies, based on a Web browser
interface. Hence, it allows browsing through hyper-links,
which can be considered as an initial idea of showing
ontologies in an intuitive way to the user. This tool has
demonstrated to be useful for ontology debugging.
However, it does not permit to debug or validate rules.
AEGONT [24] is an ontology development environment on
.NET framework, whose major innovation lies in the Rule
and Query Views, although they both are not fully
functional yet. SWeDE [29] (Semantic Web Development
Environment), an extensible framework built on the Eclipse
IDE including an OWL editor with features like syntax
highlighting, autocompletion, and error-detection. It also
integrates existing tools like the OWL Validator and
DumpOnt (an ontology visualizer). The second one is
RuleVISor [20], an alpha-tested rule editor. Also Pronto
[17] is a reasoning engine with probabilistic reasoning
support that may be included in RECC framework.
Nevertheless, they lack a debugging mechanism and
finding inconsistency between domains restricted rule and
requirement rule.

VI. CONCLUSIONS
This paper presents a framework to manage the authoring
process of rules in knowledge systems based on Semantic
Web technologies. The knowledge model of these systems
is normally given by means of ontologies. From these
ontologies it is possible to define production rules (i.e., “if-

then”) in order to describe requirements. in a natural and
straightforward manner.
In this paper, RECC is presented in the form of a GUI. The
management of ontology elements, the retrieval of the
inferred facts generated by ontology and rule-based
reasoning, or the activation/deactivation of rules during the
inference process is some of the RECC features. On the
other hand, RECC is a standalone application for users such
as Analyst which offers the same operations to model
requirement in form of rules that are consistent with
underlying domain ontology. Once new rules have been
created, they can be tested by means of the facilities
incorporated in RECC. The platform which performs the
inference process over the knowledge model is based on
Jena and Pellet reasoning engines, although it may
effortless be extended with new reasoner capabilities (e.g.
fuzzy inference). As for debugging and validation, both
syntactic and semantic checking of rule definitions has also
been included in the RECC framework. The former avoids
ill-formed rules, by warning the user if the rule is being bad
defined. The latter detects knowledge conflicts among
rules, which usually are complicated to discover. These
conflicts arise because of numerous causes: contradictory
consequents, ontology axiom violation, etc. The conflict is
then reported to the user, and besides a manual solving
mechanism is provided.
The benefits of RECC have been illustrated by integrating
this framework into a university system. In this system we
have developed a scenario where intelligent services are
implemented by combining different kind of knowledge
such as the current context, user’s preferences and desired
behaviors of the system. Such preferences and behaviors
are expressed by means of rules in this scenario. The entire
cycle of managing these rules, including the inference
process and conflict detection, has been demonstrated in
this scenario by means of the usage of RECC.

REFERENCES
1. Franz Baader and Ulrike Sattler. “Tableau Algorithms for

description Logics”. In International Conference on Automated
Reasoning withAnalytic Tableaux and Related Methods, TABLEAUX
2000, pages 1–18. Springer-Verlag, July 2000.

2. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and eter F. Patel-Schneider, editors. “The Description Logic
Handbook: Theory, Implementation, and applications”. Cambridge
University Press, New York, NY, USA, 2003.

3. Tim Berners-Lee, James Hendler, and Ora Lassila. “The Semantic
Web”. Scientific American, 284(5):3443, 2001.

4. Matthew Horridge, Sean Bechhofer. The OWL API: A Java API for
OWL Ontologies. Semantic Web Journal 2(1), Special Issue on
Semantic Web Tools and Systems, pp. 11-21, 2011

5. [Bozsak et al. 2002] Erol Bozsak and et al. “KAON - Towards a
Large Scale Semantic Web.” In EC-WEB ’02: Proceedings of the
Third International Conference on E-Commerce and Web
Technologies, pages 304–313, London, UK, 2002. Springer- Verlag.

6. [Carrol et al. 2004] Jeremy J. Carroll, Ian Dickinson, Chris Dollin,
Dave Reynolds, Andy Seaborne, and Kevin Wilkinson. “Jena:
implementing the Semantic Web recommendations.” In Proceedings
of the 13th international World Wide Web conference, pages 74–83.
ACM Press, 2004.

7. Mike Dean, Dan Connoll, Frank van Harmelen, James Hendler, Ian
Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and
Lynn Andrea Stein. Web Ontology Language (OWL). Technical
report, W3C, 2004. http://www.w3.org/TR/owl-features/

8. Felix J. Garc´ıa, Gregorio Mart´ınez, Andr´es Mu˜noz, Juan A.
Bot´ıa, and Antonio F. G´omez Skarmeta. “Towards Semantic Web-

Farheen Siddiqui/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2574-2580

www.ijcsit.com 2579

based Management of Security Services”. Springer Annals of
Telecommunications, 63(3-4):183–194, 2008.

9. Mime Sweeper Research Group. RdfExpert: A Web-powered Expert
System for Generic Inference
tasks.http://public.research.mimesweeper.com/RDF/RDFExpert/Doc
umentation/ HTML/Overview.html, August 2001.

10. Uwe Hansmann, Lothar Merk, Martin S. Nicklous, and Thomas
Stober. “Pervasive Computing : The Mobile World”. Springer, 2003.

11. M. Hefke “A Framework for the Successful Introduction of KM
Using CBR and Semantic Web Technologies”. Journal of Universal
Computer Science, 10(6):731–739, 2004.

12. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen.
“From SHIQ and RDF to OWL: The making of a Web Ontology
Language”. Journal of Web Semantics, 1:7–26, 2003.

13. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
and M. Dean. SWRL: A Semantic Web Rule Language Combining
OWL and RuleML. Technical report, W3C, 2004.
http://www.w3.org/Submission/SWRL/

14. Ian Horrocks and Peter F. Patel-Schneider. “A Proposal for an OWL
Rules Language.” In WWW ’04: Proceedings of the 13th

international conference on World Wide Web, pages 723–731, New
York, NY, USA, 2004. ACM.

15. J. Joo, and S. M. Lee. “Adoption of the Semantic Web for
Overcoming Technical Limitations of Knowledge Management
Systems”. Expert Systems with Applications: An International
Journal, 36(3):7318–7327, 2009.

16. Michael Kifer, Georg Lausen, and James Wu. “Logical Foundations
of Object-oriented and Frame-based Languages”. Journal ACM,
42(4):741–843, 1995.

17. Pavel Klinov. Pronto: a Non-monotonic Probabilistic Description
Logic Reasoner. In Proceeding at 5th European Semantic Web
Conference (ESWC08), 2008.

18. Graham Klyne and Jeremy J. Carroll. Resource Description
Framework RDF): Concepts and Abstract Syntax. Technical report,
W3C, 2004. http://www.w3.org/TR/rdf-concepts/

19. Thorsten Liebig, Holger Pfeifer, and Friedrich von Henke.
“Reasoning Services for an OWL Authoring Tool: An Experience
Report”. In Proceedings of the International Workshop on
Description Logics, 2004.

20. Christopher J. Matheus, and Kenneth Baclawski Mieczyslaw M.
Kokar, and Jerzy A. Letkowski. An Application of Semantic Web
Technologies to Situation Awareness. In 4th International Semantic
Web Conference, 2005.

21. Boris Motik, Peter F. Patel-Schneider, and Ian Horrocks. OWL 2
Web Ontology Language: Structural Specification and Functional-
style Syntax. Technical Report, W3C, April 2008.
http://www.w3.org/TR/owl2-syntax/

22. Boris Motik, Ulrike Sattler, and Rudi Studer. “Query Answering for
OWL-DL with Rules”. Journal of Web Semantics: Science, Services
and Agents on the World Wide Web, 3(1):41–60, JUL 2005.

23. [Horrocks and Sattler 2007] Ian Horrocks and Ulrike Sattler. A
Tableaux Decision Procedure for SHOIQ In Journal of Automated
Reasoning Springer Verlag, 39(3):245–429, 2007

24. Tugba Ozacar Murat Osman Unalir, Ovunc Ozturk. Aegean
Ontology Environment (AEGONT). Project Report MSR 2003176,
Ege University, Bornova-Izmir, March 2006.

25. Dmitry Tsarkov and Ian Horrocks. Automated Reasoning, volume
4130 of Springer Lecture Notes in Computer Science, chapter
FaCT++ Description Logic Reasoner: System Description, pages
292–297. Springer Berlin / Heidelberg, 2006.

26. N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and
M. A. Musen. “Creating Semantic Web Contents with Protege-
2000”. IEEE Intelligent Systems, 16(2):60–71, 2001.

27. Martin O’Connor, Holger Knublauch, Samson Tu, Benjamin N.
Grosof, Mike Dean, William Grosso, , and Mark Musen.
“Supporting rule system interoperability on the Semantic Web with
SWRL”. In Proceeding of 4th International Semantic Web
Conference ISWC, Ireland, Nov 2005.

28. Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. “Debugging OWL
ontologies”. In Proceedings of the 14th international conference on
World Wide Web, pages 633–640, 2005.

29. R.G. Pereira and M.M. Freire. “SWEDE: A Semantic Web Editor
Integrating Ontologies and Semantic Annotations with Resource
Description Framework”. In International Conference on Internet
and Web Applications and Services/Advanced AICT-ICIW ’06, 2006.

30. Jos De Roo. Euler Proof Mechanism.
http://www.agfa.com/w3c/euler/, 10 2007.

31. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,
and Yarden Katz. “Pellet: A Practical OWL-DL Reasoner”. Journal
of Web Semantics, 5(2):51–53, 2007.

32. Pramuditha Suraweera, Antonija Mitrovic, and Brent Martin. “The
Role of Domain Ontology in Knowledge Acquisition for ITSs. In 7th
International Conference on Intelligent Tutoring Systems, pages
207–216, 2004.

Farheen Siddiqui/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2574-2580

www.ijcsit.com 2580

